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Abstract 

Sensitivity analysis investigates the effect of parameter change on the solution of 
mathematical models. In chemical kinetics, models are usually based on differential 
equations and the results are concentration-time curves, reaction rates, and various kinetic 
features of the reaction. This review discusses in detail the concentration sensitivity, rate 
sensitivity, and feature sensitivity analysis of spatially homogeneous constant-parameter 
reaction systems. Sensitivity analyses of distributed parameter systems and of stochastic 
systems are also briefly described. Special attention is paid to the interpretation of 
sensitivity coefficients which can provide information about the importance and 
intercormection of parameters and variables. Applications of sensitivity analysis to 
uncertainty analysis, parametric scaling, parameter estimation, experimental design, 
stability analysis, repro-modeling, and investigation and reduction of complex reaction 
mechanisms are discussed profoundly. 

1. Introduct ion 

Complex mathematical models have been used from the very beginnings of 
reaction kinetics for the description of dynamic phenomena. The greatest practical 
problem, the numerical solution of stiff differential equations, was solved in the early 
seventies, and then new questions were raised: What is the nature of the connections 
between solution and parameters and would it not be possible to describe the 
phenomena by fewer parameters? These are the topics of sensitivity analysis. In the 
last fifteen years, the theory of sensitivity analysis became very widespread and its 
practical usefulness was demonstrated in many fields. 

In a number of recent papers dealing with the art of kinetic modeling, sensitivity 
analysis is discussed more [1,2] or less [3-7] profoundly. The single comprehensive 
review on sensitivity analysis was written by Rabitz et al. [8] and appeared in 1983. 

© J.C. Baltzer AG, Scientific Publishing Company 



204 7". Turdnyi, Sensitivity analysis of complex kinetic systems 

Since that time, new concepts appeared as a result of the rapid development of 
sensitivity theory. There are several reviews on the various subfields of sensitivity 
analysis: Tilden et al. overviewed the local and global methods [9], Cukier et al. 
summarized the FAST method [10], and other non-comprehensive reviews can also be 
found in  the literature [11-17]. 

Sensitivity methods developed for the study of spatially homogeneous constant- 
parameter reaction systems are discussed in section 2. Other methods, described in 
section 3, are suitable for the calculation of the sensitivity of special systems which 
occur when the kinetic model has space- and time-dependent parameters or when the 
kinetics is described by a stochastic or by a network model, or when experimental data 
are processed. The numbers obtained by the sensitivity methods have to be converted 
into chemical knowledge by the interpretation of sensitivity information (section 4). 
Nowadays, diverse advanced software (listed in section 5) is available for those who 
wish to use the above described tools of sensitivity analysis. The applications of the 
theory are described in detail in section 6. 

In this review, sensitivity analysis will be discussed from the point of view of 
reaction kinetics. Mathematical tools used in sensitivity theory are usually not new, and 
some computational methods have even appeared in engineering science [18, 19]. In 
this paper, the first appearance of methods in chemical kinetics is cited, but their mathe- 
matical and engineering roots are not searched. Such references can be found in the 
original papers and in refs. [8] and [9]. 

Sensitivity methods elaborated primarily for reaction kinetics can usually 
be used without changes in other fields where dynamic models described by 
differential equations are applied. However, application of the theory in other 
disciplines is not discussed here. A large part of the sensitivity methods used in the 
investigation of complex mechanisms was also applied to molecular dynamics. 
Although molecular dynamics and chemical kinetics are related disciplines, applica- 
tions of sensitivity analysis in those fields will not be cited here, and the reader is 
referred to the following reviews: [14], [20] and [21]. 

2. Basic sensitivity methods 

The kinetics of a spatially homogeneous reaction system is usually modeled by 
an initial value problem: 

d c / d t  = f ( c ,  k),  c(O) = c o , (1) 

where c is the n-vector of concentrations and k is the m-vector of system parameters. 
These parameters may include rate coefficients, Arrhenius parameters, temperature, 
pressure, etc., but initial concentrations are not considered in vector k. The solutions 
of the system of ordinary differential equations (1) are concentration-time curves. 
Rates of production of species can also be calculated from concentrations. Often, 
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certain kinetic features of the modeled systems, deduced from concentration curves, 
are more important for the investigator than the concentration-time curves themselves. 
Sensitivity analysis can be classified on the basis of the output of  the kinetic model 
investigated as a function of parameters. Thus, concentration sensitivity, rate sensi- 
tivity, various feature sensitivities, etc. may be distinguished. Sensitivity methods may 
be divided from another point of view as well. Local methods refer to the small changes 
of parameters, while global methods refer to the effect of simultaneous, possibly 
orders-of-magnitude parameter changes. 

2.1. LOCAL CONCENTRATION SENSITIVITIES 

The effect of  a parameter change on the solution can be expressed by a Taylor 
series expansion: 

c i ( t , k + A k ) = c i ( t , k ) + ~  Oci 1 ~ ~ ~2c~ j=l  ~j j  Akj -I- 2/=l  j=! ~kl~-~j AklAkj+ . . . .  
(2) 

In this equation, the partial derivatives Oci/Ok j are called the first-order local concen- 
tration sensitivity coefficients, while O2ci/Okl~k ) are the second-order local concentra- 
tion sensitivity coefficients, etc. Usually, only the first-order (or linear) sensitivity 
coefficients Oci/Ok j are computed and studied. They constitute the sensitivity matrix S, 
which represents a linear approximation of the dependence of the solutions on para- 
meter changes. 

Assume that system (1) of ODEs is solved from t = 0 to t = tl. Then the 
parameters are changed by Ak and the solution is continued to t 2. The difference 
between the original c and the perturbed c" solutions can be approximated by the 
sensitivity matrix: 

C'(t2) = c(t2) + S(t 2, tl)Ak q. (3) 

This equation shows that the sensitivity matrices have a double time dependence: 
S(t 2, tl) = ~c(t2)/3k(tl). Usually, tl = 0 is selected. It seems natural to identify the initial 
time of the ODE solution with the initial time of the sensitivity calculation, but this 
selection implies a loss of generality. In some cases when, for example, combustion 
reactions are studied in a batch reactor, there is a natural zero time of reaction (the time 
of ignition) but, for example in the case of atmospheric chemistry, the selection of t x and 

t 2 is arbitrary. 
Matrix S can be obtained by differentiation if the analytical solution of an ODE 

is known. Unfoxxunately, in chemical kinetics such simple systems are rarely met and 
numerical methods have to be applied. In sections 2.1.1-2.1.5, five methods will be 
described for the numerical calculation of the local concentration sensitivity matrix. The 
methods are compared briefly in section 2.1.6. In the case of stationary systems, the 
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limit in time of the sensitivity matrix can be calculated by an algebraic expression 
(section 2.1.7). Two methods, discussed in sections 2.1.8 and 2.1.9, were developed for 
for an approximate calculation of the sensitivity matrix. 

2.1.1. Brute force method 

The simplest way of calculating local concentration sensitivities is the use of the 
finite difference approximation. This technique is also called the brute force method or 
the indirect method. Applying this method, the j th  parameter is changed at time t~ by 
zXk i, while all other parameters are held fixed. Matrix S is calculated from the difference 
of the original and perturbed solutions: 

 c(t2) c(t2, j+A j)-c(t:,k i) 
~ k j ( t l  ) Akj 

j = 1 . . . . .  m. (4) 

Equation (4) shows that the application of the brute force method requires the solution 
of the differential equation (1) using the nominal value of parameters and m solutions 
of the equation using perturbed parameter sets. The sensitivities obtained belong to 
the (k + Ak/2) parameter set. If the sensitivity coefficients were desired to belong to the 
nominal parameter set k, eq. (4) should be modified by replacing the second term in the 
numerator by c(to, k . -  Ak)  and the denominator by 2Ak  [22-24]. Nevertheless, when 

. . z 1 J 1 
using th~s centered formula, 2m solutions are required. 

The brute force method is widely used since no extra code beyond the original 
ODE solver is needed for the calculation of sensitivities. However, this method is not 
recommended because sensitivity coefficients can be calculated consuming much less 
computer time by other methods, e.g. the direct method [23,24]. Moreover, the estima- 
tion of the errors of sensitivity coefficients calculated by eq. (4) requires at least as much 
computer time as the calculation itself. The errors can be minimized by an appropriate 
selection of Ak (see [8], p. 422). If Ak) is large, the linearity of approximation fails, but 
if Ak) is too small, the round-off error is high. 

Very often, a heuristic sensitivity measure is obtained using eq. (4) by changing 
the parameters by 50% [25], or by a factor of 2 [26-30] or 5 [31,32,1731, respectively. 
The sensitivity coefficients obtained in this way are neither local nor global sensitivity 
measures. 

2.1.2. Determination of sensitivities using approximate empirical models 

The method of Miller and Frenklach [33-35] is based on approximations by 
empirical models of the solution of system (1) of ODEs in a parameter region at 
time t. Sensitivity information is obtained by differentiating the empirical equations. 
The approximation requires much more computational effort than the computation of 
sensitivities for a single-parameter set. It is, however, a good investment if a parameter 
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estimation procedure requires the knowledge of sensitivities at several points of a 
parameter region. Approximate values of local sensitivity coefficients belonging to 
these points can be calculated from the obtained S(k) functions, but significant dif- 
ferences may occur between the exact and approximated sensitivity coefficients. 

A similar procedure was also applied by Derwent and Hov [36]. 

2.1.3. Direct method 

Differentiation of eq. (1) with respect to kj yields the following set of sensitivity 
differential equations [37]: 

d De 0c Of  (t) 
dt ~kj - J(t)~j + o----k~j ' (5) 

where J(t) = 3 f /3c  and the initial condition for Oc/Ok. is a zero vector. 
1 

A number of methods for computing the local concentration sensitivity co- 
efficients are based on eq. (5). The three strategies described in this section are com- 
monly referred to as the direct method. Other, more sophisticated, methods proposed for 
the solution of eq. (5) have different names, such as the Green function method, 
polynomial approximation method, etc., and they will be treated separately below. 

Higher-order sensitivities can be calculated by further differentiation of eq. (5). 
The generic expression for the calculation of arbitrary-order sensitivities is the follow- 
ing linear differential equation [38]: 

rb = Jw +s, (6) 

where the inhomogeneous term s is independent of w. In the case of second-order 
sensitivities [39]: 

W = 02c/Ok.  Ok. ( 7 )  
L j 

and 

s = 3z f  13kiOkg + (OJIOki)(Oc/Okj) + (OJ/Ok:)(0e/0ki) 

m m 

+ ~, ~, (OJi/Ocj)(Oc/Oki)(Oc/Okj), (8) 
i=1 j = l  

where Ji is the ith column of the Jacobian. Since the structure of the differential 
equations for the higher-order sensitivities is very similar to eq. (5), these higher-order 
sensitivities can be calculated by most of the methods described below (cf. 
[12,13,22,38-41]).  
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Equations (5) and (1) are coupled through matrices O flOe and Of~Ok, that is, the 
solution of eq. (5) requires the knowledge of the solution of eq. (1) in all the points 
where the ODE solver calculates the right-hand side of eq. (5). Connections between 
these two equations can be made in one of the following ways: 

(1) Solve the couple of equations (1) and (5) for j  = 1 . . . . .  m, which requires the 
solution of 2n ODEs m times [42]. This version is the simplest to code, but is the least 
economical and may cause numerical difficulties [43-45]. 

(2) The solutions of systems (1) and (5) can be decoupled. First, differential 
equation (1) is solved and the concentration-ti~'ne curves obtained are stored in a table. 
Concentration values desired for the solution of eq. (5) at times when there is no 
tabulated value are obtained by interpolation [12,45,46]. 

An improved version of the decoupled direct method was presented by 
Dunker [22,23]. He called attention to the fact that eqs. (1) and (5) have the same 
Jacobian, therefore a stiff ODE solver will use the same step size and order of approxi- 
mation in the solution of eqs. (1) and (5). His method first manages a step for the 
solution of eq. (1), and also performs steps for the solution of eq. (5) fo r j  = 1 . . . . .  m. 
The procedure is repeated in the next step. This approach is applicable only in the case 
where the ODE solution method is fully implicit. Since the Jacobians of the equations 
are the same, it has to be triangularized only once for each time interval. 

Dunker's implementation was based on the numerical integration program LSODE 
of Hindmarsh. Recently, a new coding of this algorithm, also based on the LSODE 
program, was elaborated by Leis and Kramer [47,48]. Their previous realization 
was based on the program LSODI, which was valid only for restricted systems 
of differential/algebraic equations [49]. The implementation by Caracotsios and 
Stewart [50] is written for general systems of differential/algebraic equations. Their 
work is based on the code DASSL. 

(3) Solve eq. (1) and eq. (5) for all j = 1 . . . . .  m simultaneously, which 
requires the solution of (m + 1)n ODEs. Since implicit or semi-implicit algorithms 
appropriate for solving stiff differential equations require the decomposition of 
the (m + 1)n × (m +l )n  Jacobian in each step, the direct solution of this large system 
of ODEs is inefficient. However, Dickinson and Gelinas [42] called attention to the fact 
that this large Jacobian has an almost block-diagonal structure, and Valk6 and 
Vajda [51 ] constructed a fast algorithm - called the decomposed direct method- for the 
efficient solution of this large system of ODEs. Similarly to the method of Dunker, only 
the Jacobian of eq. (1) has to be decomposed and only once in each step. 

The application of the direct method was discussed in refs. [12, 22,24, 37, 38,41-43, 
45,47,50-63]. 

2.1.4. The Green function method 

Differentiating eq. (1) with respect to initial concentrations c °, the following 
equation is obtained: 
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d ~c(t) ~c(t) 
- J ( t )  - -  i = 1 . . . . .  n ,  ( 9 )  

dt ~c°(tl ) ~c°(tl ) 

where t 1 is the initial time of sensitivity calculation and Oc(t~)/~c°(ta) = S/. The symbol 
6~ represents a vector of zeroes except in the ith position, where it has 1. Rewriting this 
equation in terms of the matrix formalism, one obtains: 

d 
- -  K(t,  t l )  = J(t)K(t,  t l) ,  (10) 
dt 

where K is the initial concentration sensitivity matrix. K(t, tl) = {Oci(t)/~°(tl)}, with 
K(t  1, tl) = I and t > t 1. 

Since eq. (5) is a linear inhomogeneous equation with time-dependent co- 
efficients, it can be solved by first calculating the solution of the homogeneous part 
(eq. (10)) and then determining the particular solutions corresponding to each para- 
meter: 

Oc(t2) t2 ~ f ( s )  
- f K( t2 , s )  ds. (11) 

~kj(tl)  tl • 

In the above equation, K is known as the Green function matrix or kernel. The 
sensitivity method that is based on eq. (11) is named the Green function method. This 
technique is also called the variational method. It was first applied to solve problems 
in chemical kinetics by Rabitz et al. [39]. There are several variants of the Green 
function method and they differ from each other in the calculation of the matrix K: 

(1) Equation (11) requires K as the function of the second argument, and this 
matrix can be determined via the calculation of the adjoint Green function K t using the 
identities Kt(t 1, t ) =  K(t, tl) and K(t 3, t l ) =  K(t 3, tz)K(t z, tl). The adjoint Green 
function is obtained by the solution of the following differential equation: 

d K t ( t  1 t ) = _ K t ( t l , t ) j ( t l ) ,  (12) 
dt 

where Kt(t, t) = I and t a < t. 

(2) The Green function for t > t 1 can also be expressed as 

K(t, tl) = G(t) G-l(tl), 

where 

(13) 

d/dt G(t) = J(t) G(t); G(t0) = I. (14) 
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The matrix G is not invertible numerically in all cases [39], but Hwang proposed a 
solution for this problem [40]. His algorithm investigates the determinant of the matrix 
G during the solution of eq. (14) and when the value of IdetGI goes below a certain 
bound, the calculation of G is restarted. The procedure divides the time interval into 
parts; in other words, it rescales it. The matrix G is given as a product of matrices G' 
calculated in the subintervals. This variant of the Green function method - called the 
scaled Green function method - was elaborated in two versions: in the first version, 
called the SGFMB method, the rescaling is done when a numerical singularity of G is 
detected [40]. According to the second version (SGFMBI), rescaling is carried out at the 
beginning of each step in the numerical integration of eq. (14) [64,65] and the 
exponential character of G is also t ~ e n  into account [66]. 

(3) Rabitz et al. introduced the analytically integrated Magnus version of the 
Green function method [45]. In the GFM/AIM method, the piecewise Magnus method 
is applied, i.e. matrix K is approximated by a matrix exponential: 

t + A t  

K(t+At ,  t )=exp  j" J(s)ds.  (15) 
l 

The sensitivities are then calculated from the kernel by analytical approximations to the 
corresponding integral. The GFM/AIM method was found to be several times faster 
than the original Green function method [12]. 

In all the Green function methods, the numerical effort is proportional to the 
number of variables and not to the number of parameters. The Green function method 
is particularly suitable if the sensitivities of one concentration to several parameters are 
to be determined. In this case, the total effort is in the order of one kinetic solution. 
However, the algorithms of the Green function methods are very involved, requiring not 
only the solution of stiff differential equations but also interpolation of functions, 
integration using quadratures, and matrix operations. These are hardly controllable 
sources of numerical errors. 

The Green function matrix technique was extended to provide the sensitivities of 
objective functions [67, 68]. 

Useful advice for the computational implementation of the Green function method 
(version (1)) is given in [69]. Edelson et al. coded the Green function algorithm for a 
vector machine [70]. The Green function method was applied to solve kinetic problems 
in a number of papers [12, 15,22,39,40,43-45,64,66-68,70-88]. 

2.1.5. The polynomial approximation method 

The polynomial approximation method elaborated by Hwang [38] transforms the 
sensitivity differential equations (5) to a set of algebraic ones. The original time interval 
is divided into subintervals. The variation of sensitivity coefficients with time is 
approximated by Lagrange interpolation polynomials of degree L: 
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bc(t) z 3c 
Okj s=0 ~ Is(t) ~ j  (ts); j =  1,2 . . . . .  m. (16) 

The value of Oc/Ok. is known at t o and the values of Oc/Ok. for L prescribed times 
J 

(t o < t 1 < . . .  < t/) are determined by requiring that eq. (16) satisf~ eq. (5) at these points. 
This condition can be expressed by an algebraic equation [38] and the values are given 
by its solution. 

Information is needed for the appropriate division of the time domain and there- 
fore a preliminary study of the behavior of eq. (1) is necessary, which makes the 
polynomial approximation method slightly uncomfortable. However, as in the case of 
the Green function method, the main computational effort is proportional to the number 
of species and not to the number of parameters. Hwang demonstrated the high compu- 
tational speed and good numerical stability of the method. A computational algorithm 
and a FORTRAN code list were also provided [89]. The method was extended to 
spatially inhomogeneous systems, too [1]. 

2.1.6. Which method to choose? 

There are a number of articles (cf. [12,22,24,38,43,45,47,51]) in which the 
above discussed methods are compared. The conclusion of each article is that the 
authors' own method is faster and maybe more accurate than the previously pubished 
methods. Indeed, the methods are different from each other in accuracy and computer 
time requirements, but these characteristics may be different for different problems. The 
improved direct methods seem to provide highly accurate sensitivities and they 
consume relatively little computer time; therefore, the use of such methods is recom- 
mended in general. If the number of parameters is large in comparison with the number 
of state variables, the use of the GFM/AIM method or that of the polynomial approx- 
imation method is advisable. 

2.1.7. Stationary systems 

In equilibrium and in stationary state, concentrations are constant. Sensitivity 
coefficients are, however, dynamic quantities governed by eq. (5). The time profiles of 
the sensitivity coefficients give the dynamic response of the system to a differential 
change in kj (see the analytical expression in [8], p. 426), and the stationary sensitivity 
coefficients are the limits in time of the dynamic quantities [46]. (This latter statement 
is valid only if the steady state is asymptotically stable.) For stationary conditions, 
species concentrations as wen as matrices J and F are time invariant; thus, the stationary 
sensitivity coefficients may be obtained from algebraic equations: 
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where J is the Jacobian and E is the j th column of matrix F = {~fi/0k/}. Equation (17) 
follows from eq. (5) by takir(g the left-hand sides equal to zero. 

The stationary sensitivity matrix represents the change of stationary species 
concentrations as a result of  a differential change in parameters. This sensitivity 
measure is well applicable in the parameter estimation of stationary kinetic 
systems [90]. 

2.1.8. Quasi-stationary sensitivity 

All sensitivity coefficients are zero at t 1 (according to the initial condition of the 
sensitivity equation (5)), and they usually change very rapidly only in a short time 
interval. An experience of numerical calculations is that at times t 2 >> tl, the change of 
local concentration sensitivities is not dramatic unless the change of concentrations is 
rapid. This behavior is similar to the change of the concentrations of free radicals having 
a short lifetime. This fact gave the idea to approximate local concentration sensitivities 
with quasi-stationary sensitivities: 

a~(t2)/Okj(t 1) = sq(t2); t 1 << t z. (18) 

The structure of sensitivity differential equations (5) allows the use of the 
Tihonov theorem [91], and quasi-stationary sensitivities can be calculated by an alge- 
braic equation: 

0 = J S q + F, (19) 

S q = -J -1F.  (20) 

The matrix S q is a poor approximation of the sensitivity matrix S, yet it can be 
successfully applied to reveal important reactions in complex reactions systems [91]. 

2.1.9. Scaling relations and self-similarity conditions 

Another way of approximately calculating sensitivity coefficients is based on the 
observation that the shapes of calculated sensitivity curves are in most cases very 
similar to each other. This is usually the case when a dependent variable plays a 
dominant controlling role in the kinetics. Such a dominant variable (denoted by c 1) 
might be a radical concentration or the temperature in flame systems. The controlling 
role can be formulated by 

ci(t, k)  = F.(Cl( t  , k ) )  i :¢ l .  (21) 

The functional dependence between concentrations (variables) leads to the scaling 
relations [ 14,92] between sensitivities: 
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aci(tz)/Okj(t 1) = (aCl(t2)/ak~(t 1)) (fi(t2)/fl (t2)). (22) 

A consequence of these relations is that sensitivity coefficients fulfill the self-similarity 
condition: 

ci(t2)/Okj(t 1) = Xi(t2) t~(t 1), (23) 

where the characteristic constants ty. scale the sensitivity coefficients for a given 
dependent variable with respect to th~ various parameters. 

Both the scaling and self-similarity relations were elaborated for space-time 
systems [14, 61,92,93]. Similar equations can be derived for multidominant dependent 
variable systems. 

2.2. GLOBAL CONCENTRATION SENSITIVITY 

In global methods, the parameter vector k is considered to be a random vector 
with probability density function p. Therefore, the solutions of the models such as, for 
instance, the concentrations, are also random variables at any time. The methods of 
global concentration sensitivity analysis determine the mean and the variance or the 
probability density function of concentrations, given the probability density function of 
parameters and initial concentrations. Usually, the probability density function of para- 
meters is not known, and a presumed probability density function has to be calculated 
from the known means and variances of parameters by assuming a physically reason- 
able distribution. 

The single non-stochastic global sensitivity method is based on the Lie algebraic 
anti.group methods. Nevertheless, the Lie group method [94,95,169,170] was only 
limitedly applied for systems of nonlinear differential equations and therefore this 
method will not be discussed in detail. 

2.2.1. The FAST and the WASP methods 

The most widely used global method is the Fourier amplitude sensitivity test 
(FAST) method, which was developed by Cukier et al. [10,96-99]. 

Assuming that the concentrations are random variables, their mean value at 
time t is given by 

<c/(t)) : I ci(t, k )p(k)  dk, (24) 

where p(k) is the probability density function of k. This m-dimensional integral can be 
converted into an equivalent one-dimensional integral using the following transforma- 
tions: 
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kj = G.(sin w s), j = 1, 2 . . . . .  m, (25) 

where the functions Gj are unambiguously determined by the probability density func- 
tion p, o0j is a frequency which belongs to the j th parameter, and s is a scalar variable 
called the search parameter. Expression (25) shows that parameter k. varies as a periodic l 
function of  the search variable s. If the frequencies coj are incommensurate, the curve 
defined by eq. (25) fills the m-dimensional parameter space in the range _oo < s < +,,o. 
For computational reasons, it is practical to use appropriate integer frequencies instead, 
and therefore the concentrations will be 2 Jr t~riodic functions of s at time t and they can 
be Fourier analyzed. The variance of concentration c i at time t can be expressed by: 

cr2(t) = 2 ~, (A2(t) + B2(t)), (26) 
1=1 

where Ait(t ) and Bit(t) are the Fourier coefficients: 

7r 

1 f c i ( t , s )cos lsds ,  l =  0, 1 . . . .  ; (27) Air ( t ) -  27r _~ 

1 S c i ( t , s )s in lsds ,  l =  1,2 . . . .  (28) Bit(t)= ~ - ~ t  

If the Fourier coefficients are evaluated with the fundamental frequencies of  
transformation (25) or with its harmonics (l = rw., r = 1, 2 . . . .  ), then the obtained 
v a r i a n c e s  

+oo  

0"2(0 = 2 ~, (AZrto~(t)+ B2ro~s(t)) (29) 
r =  1 

are part of  the total variance G/2(t) and correspond to the variance of  c i arising from the 
2 2 uncertainty in the j th  parameter. The ratio S..(t) = ~. (t)/cr. (t), called partial variance, q q 

is the basic measure of sensitivity in the FAST method. The partial variance matrix is 
a normed matrix and therefore it is independent of  the units used. 

The FAST method was generalized by Kanatani [100], and he developed its 
further mathematical foundations. An algorithmic improvement of the FAST method 
was proposed in [101]. 

Contrary to its name, the FAST method requires much computer time. If there are 
m parameters in the model and they are varied over orders of  magnitude, the system of 
ODEs has to be solved about N = 1.2 × m z5 times [99]. In the case of  a 50-parameter 
model, this means 21,200 runs. 

Computational implementations of the FAST method were reported by Seinfeld 
et at. [102,103] and by Pierce et al. [104]. Applications of  the FAST method are also 
found in refs. [9,10,52,97,101,104-110]. 
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The point of  the FAST method is that the {(cos ns), (sin ns), n = 0, 1, 2 . . . .  } set 
of  functions can serve as a basis for the decomposition of the corresponding function 
c(s). A similar decomposition can be carried out with other functions of simUar proper- 
ties. An example of this was shown by Pierce and Cukier [111], using Walsh functions. 
The Walsh functions form a complete orthogonal system of two-valued functions. 

The Walsh amplitude sensitivity procedure (WASP) is very similar to FAST. In 
the WASP method, the parameters are assumed to have two values with "equal proba- 
bility", and the effect of  parameter change from the first value to the second value on 
the output is investigated. A practical choice for the parameters is the selection of 
extreme values, maximum and minimum, of the parameter uncertainty range. Thus, the 
WASP method provides an upper limit of the model sensitivity with respect to other 
choices of parameter distribution functions. The WASP method is suitable for studying 
the effect of  a model reduction, i.e. setting zero the value of part of the parameters. In 
such an investigation, the upper value is the nominal value of the parameter and the 
lower value is zero. The WASP method is numerically simpler than the FAST method, 
but consumes much more computer time. The investigation of a 50-parameter model 
would require 250 = 1015 runs. 

2.2.2. Stochastic sensitivity analysis 

The method of stochastic sensitivity analysis is a global sensitivity method based 
on the solution of a partial differential equation. This technique was elaborated by 
Costanza and Seinfeld [9,112]. The name "stochastic sensitivity analysis" is not 
fortunate, since all the global methods deal with stochastic measures. Moreover, a 
different technique, for the investigation of gas-surface collisions [113,114], has the 
same name. 

The initial value problem (1) can be reformulated by joining the concentration 
and parameter space: 

x = F(x); x(0) = Xo, (30) 

where F(x) = (f~, . . . . . .  ,f~, 0, , 0) and x o = (c~, . . . ,  c °., k~, . . . .  , k ) .  The joint 
concentration-parameter probability density function can be obtained by the solution of 
the following equation: 

~o 
- "  + V ( F p )  = 0; p(O,x)=po(x) ,  (31) 
Ot 

where Po(X) is the probability density function of x o. 
This method requires considerable computer time since the numerical effort 

needed to obtain the desired probability density function is comparable to that required 
in the FAST method. 
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2.2.3. Monte Carlo methods and Latin hypercube sampling 

All the global methods described previously require complex computer codes. 
Monte Carlo methods do not require special programs, but they also consume consider- 
able computer time. A random number generator is used to select values of parameters 
in the domain of uncertainty according to their probability density function. The system 
is then solved for each of the parameter combinations. The computed concentration 
values are analyzed by standard statistical methods at any given time t. 

Using this method, the original ODE solver has to be supplemented by two 
segments for selecting new parameter values and for a statistical analysis of solutions. 
The convergence of statistical characteristics has to be checked, say, after every 
thousand runs. Applications of the Monte Carlo methods are given in [115-117]. 

The Latin hypercube sampling can be considered as an improvement of the 
Monte Carlo methods. In this procedure, the input parameter sets are not selected 
randomly, but are planned in advance according to a Latin hypercube. The means, 
variances and cumulative frequency distributions obtained by Latin hypercube sampling 
are insignificantly different from those generated by Monte Carlo methods, while the 
computer time demand is about an order of magnitude less [36,118]. 

2.3. RATE SENSITIVITY 

Investigation of the production rate of species is very important in chemical 
kinetics and their sensitivity is very informative, too. According to the Young theorem, 
the derivative of concentration sensitivities with respect to time, (OlOt)(Oci(tz)lOk(tx)) 
is identical to rate sensitivities: (Oci(t2)/Ok)(tl) = Of/(t2)/~kj(tl). Once local concentra- 
tion sensitivities have been computed, the values of rate sensitivity coefficients are 
given by the sensitivity differential equation (5): 

( t 2 , t l ) =  J(t2)S(t  2, t  1 ) + F ( t  2). (32) 

Rate sensitivity coefficients 0fi ~Ok supply further mechanistic details about a reaction 
system which are not inherent in t~ae concentration sensitivity coefficients [77, 119]. 

A particular case of rate sensitivities is obtained when t~ = t 2. Then, 
~fi(tz)/3k(tz) = Ofi(tz)/~k, which is an element of matrix F. The matrix F is an 
algebraic sensitivity measure in contradistinction to the dynamic sensitivities discussed 
so far. If k denotes the vector of rate coefficients, then the log-normalized algebraic rate 
sensitivity matrix F can be computed by the following equation [120]: 

(33) 

where v is the stoichiometric matrix, R is the rate of reaction j, and.//is the production 
rate of species i. Thus, an element of matrix F is the ratio of the rate of 
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formation or consumption of species i in reaction j and the net rate of concentration 
change of  species i. 

The matrix F represents the link between concentration sensitivity analysis and 
rate-of-production analysis. This matrix can be treated like other sensitivity matrices, as 
discussed in section 4.2, while the connection between the log-normalized local concen- 
tration sensitivity matrix S and matrix F provides a mathematical basis for the use of 
various forms of reaction rate analyses [120]. The investigation and reduction of 
complex reaction mechanisms can be based very effectively on the study of the matrix 

[120-122, !64,166,168]. 

2.4. FEATURE SENSITIVITY ANALYSIS 

Results of  kinetic modeling are usually concentration-time curves. However, 
often certain kinetic features of the investigated systems, which are functions of the 
concentrations, are more important for the investigator than the concentration-time 
functions themselves. Such features are, for instance, the maximum concentration of a 
species, the corresponding reaction time, the length of the induction period, or the 
period time "r of an oscillating reaction. 

Feature sensitivities can be determined approximatdy by the brute force 
method [2]. However, since concentration-time curves contain all information about 
features, feature sensitivities can be calculated from concentration sensitivities and con- 
centrations. The first example of this was given by Edelson and Thomas [81], who 
derived the following equation (without the correction term Q) for the calculation of the 
period sensitivities of an oscillating reaction: 

O~: _ Oci(t2)/Okj(tl ) -  Oci(t2 + ~)]Okj(tl ) + Q. (34) 

Ok) dci (t2)/dt  

The correction term Q may be negligible in some practical calculations [123, 124]. 
This correction term ~ends to zero as (t z - t 1) ~ ~,  which was shown for the general 
case [123,125] and for an explicit form [126]. 

Larter et al. [82] proposed a different but related equation for the calculation of 
3"r/3kj. They pointed out that the accuracy of the computation depends on the 
species i selected. GyOrgyi et al. [57] applied Edelson's treatment for the computation 
of sensitivities in the time periods from minimum to maximum and from maximum to 
minimum of the concentration of a species. They also suggested a method to select the 
most appropriate time t z and component i for period sensitivity calculations in order to 
minimize numerical errors. 

Rabitz et al. proposed two methods for the computation of  sensitivities of  
arbitrary features from local sensitivities. According to the first method - called point- 
wise feature sensitivity analysis [127] - the feature in question is characterized by a 
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mathematical equation and feature sensitivities are derived from it. Equation (34) was 
obtained in a similar way, and also an equation for the calculation of induction period 
sensitivities was given in ref. [72]. If  the investigated feature is the location t* of the 
concentration maximum of species i [8,13,72], the corresponding mathematical equa- 
tion is 

~i(k, t(k))l, = t* = 0. (35) 

Differentiation of eq. (35) with respect to kj yields: 

~t* -~2ci(t*)/~t~kj(O) 
~kj(O) - ~2ci(t*)/O2t2 

(36) 

Equation (36) indicates that 3t*/~k is the ratio of the appropriate rate sensitivity 
1 

coefficient and the second derivative of the concentration c i with respect to time, which 
can be calculated from the Jacobian and from the first derivative: ~2c/~t2 = J f ( c ) .  

The second approach-  called force-fit feature sensitivity analysis [128] - is based 
on fitting by a least-squares procedure the concentration c u r v e  ci(k, t) tO a chosen 
function ci( t ,  t) (where fl is the vector of feature parameters) in a time interval It 1, t 2] 
containing the features of interest. The coefficient 3fli/~k. is then obtained as a function 
of Oc(fl, O/Off and Oc(k, O/Ok. This approach was at~plied in a parameter scaling 
procedure [76] and in the transformation of an elementary chemical kinetic mechanism 
to a global mechanism [129]. 

Note that, unless there is an a priori reason for selecting a particular functional 
form for c/(fl, t), finding a suitable function may require significant effort and the first 
approach is preferable. 

Feature sensitivities give a different insight into the operation of a kinetic 
mechanism than concentration sensitivities do. However, the interpretation of feature 
sensitivities is not straightforward in general. Recently, artificial intelligence was shown 
[58] to provide a considerable help in the extraction of kinetic information from feature 
sensitivities. Most applications of feature sensitivities occur in the fields of oscillating 
reactions [57,58,71,79,80-82], and of combustion kinetics (mostly using the brute 
force method) [2,28,72,88,130-132].  

3. Sensitivity analysis of special systems 

The basic case of kinetic modeling is the deterministic simulation of spatially 
homogeneous constant-parameter systems. Sensitivity methods devoted to the study of 
reaction systems described by eq. (1) have been discussed in the previous section. In this 
section, other sensitivity methods, suitable for the investigation of more special systems, 
are given. 
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3.1. FUNCTIONAL SENSITIVITY ANALYSIS 

In most kinetic modeling studies, parameters are assumed to be constant. In a 
number of problems of great practical importance, however, parameters are functions 
of time and/or space. In models of atmospheric chemistry, rate coefficients of photo- 
chemical processes are changing with the intensity of sunshine; also in non-isotherm 
reactors, rate coefficients are functions of time (and space). If  the parameters are 
functions, the appropriate sensitivity analysis is based on their perturbation by another 
function using the principles of nonlinear functional analysis. Functional sensitivity 
analysis has been used for a long time in control theory and in computational physics. 
A necessary and sufficient condition of functional sensitivity analysis is the existence 
of the G~teaux differentials of the operators appearing in the problem [133,134]. 
Operators used in chemical problems are usually "well-behaved" (e.g. parameters are all 
continuous functions) and therefore special techniques are applicable, too. 

In chemical kinetics, Dickinson and Gelinas [42] were the first to face the 
problem of parameter functions in the study of an atmospheric chemical mechanism. In 
their model, kj(t) denoted the rate coefficient function of photochemical reaction j and 
c~e(t) was an appropriately chosen perturbing :function. Functional sensitivities were 

fined by 

~ci(kj(t) + ~gj(t)) (37) 
Sij = ~E e = 0 "  

A similar sensitivity definition was also used by Dunker [23,135] in the study of an air 
pollution model. 

The sensitivity measure s.. depends on the perturbing function g .  In the general 
case, this measure can only be calculated by a procedure similar to the orate force 
method. Therefore, another functional sensitivity measure that is unambiguous and can 
be calculated by more sophisticated methods was searched for. The sensitivity measure 
which meets these requirements was named sensitivity density [136]. As a first step, 
sensitivity densities will be shown as applied for constant-parameter models, since in 
this case a direct comparison to local concentration sensitivities can be made. 

The basic idea of local sensitivity analysis is that a constant parameter kj is 
changed to a new value at t 1 (and kept at this new value) and the effect of  a parameter 
change on the concentration of species i is observed at t 2. The essence of  sensitivity 
densities is that the parameter k, is perturbed by 8k; just at time t, and the response at 
t~ is characterized by a functiohal derivative 6c./~k.. The sensitivity density matrix 

Z t .~ . . . . .  

D(t2 , /1 )  = {~ci(tz)/~k.(tl) } can be simply evaluated if the mmal  concentrauon sensi- 
tivity matrix K(t  2, tl) J= {bc(t2)/Oc°(tl)} and the matrix F(t 1) = {~f(tl)/Ok} are known: 

D(tz, tl) = K(t2, tl) F(tl). (38) 
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The relation to the local concentration sensitivities is given (for the case of constant 
parameters) by an integral: 

/2 

S (t 2 , t 1 ) = j" D(t 2 , t ')dt'. 
l l  

(39) 

Note that when the sensitivity densities are integrated according to eq. (39) to give local 
concentration sensitivities, the Green function method is regained. The sensitivity 
density matrix can also be related [120] simply to the algebraic rate sensi- 
tivity matrix. As is apparent from eq. (38), the matrix F is a limit in time of the 
sensitivity density matrix D: 

F(t2)= lira D(t2,tl). (40) 
l l  -'~ t2 

Based on sensitivity densities, a parallel local sensitivity analysis theory for 
the investigation of constant parameter models can be elaborated. Higher-order 
sensitivity densities [137], derived sensitivity densities (see section 4.2.2) [138,139], 
sensitivity densities of objective functions [67], and experimental sensitivity densities 
(see section 3.4) [8] were also calculated. However, in the investigation of constant 
para-meter models, sensitivity densities have played only a minor role so far [82]. 

The use of sensitivity densities is of basic importance in the study of 
models with space- and time-dependent parameters. Concentration changes in a 
spatially inhomogeneous chemical system can be described by a set of coupled non- 
linear partial differential equations: 

~ci/Ot = Vu(x,  t)c i + VDi(x, t)Vc. + f ( c ,  k(x, t)) + Si(x, t) i = 1 . . . . .  n, (41) 

with initial and boundary conditions: 

ci(O, x) = c°(x), (42) 

A](x, t)Vc/+ A2(x, t)c i = A~(x, t), (43) 

where the x space coordinate vector is an element of the space domain D, u(x, t) is the 
advection speed field, D/(x, t) is the matrix of physical or turbulent diffusion,f (c, k(x, t)) 
is the right-hand side of the kinetic differential equation with space- and time-dependent 
parameters due to space- and time-dependent temperature and/or light flux, and Si(x, t) 
represents the sources and sinks of the species in the system. 

Sensitivity equations have so far been derived only for a special case of the above 
problem: 
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Oq/Ot = VDi(x, t)Vc i + f ( c ,  k(x, t)) i = 1 . . . . .  n, (44) 

ci(O, x) = c°(x), (45) 

A)(x, t )V~ + A2(x, t)c i = A~(x, t). (46) 

An appropriate sensitivity measure for an in_homogeneous reaction system is the 
generalized sensitivity density: 

D(x 2, t 2, x ;  t ') = { t~c/(x 2, t2)/t~kj(x', t')}. (47) 

It is a response function which gives the linear response of the concentration of species 
i at (x 2, t 2) to a small variation in the parameter ky at (x; t'). The change in the 
concentration ci(x, t2) due to a small variation of k ----> k + Sk in the parameters is: 

6c(x ,  t2 ) = ~t ~ D(x',  t', x ,  t2 )Sk(x ' ,  t ' )dx 'd t ' .  (48) 
l 1 ~Z) 

Functional derivatives for the study of reaction-diffusion systems were first 
computed by Koda et al. [52,140]. Rabitz and coworkers showed [136,137,141,142] 
how a sensitivity analysis of the system described by eqs. (44)-(46) has to be carried 
out. They introduced the generalized initial concentration sensitivity matrix K (this is 
also called the Green function): 

K(x, t, x ;  t ' )  = { Sci(x, t ) / t~(x ' ,  t')}. (49) 

This measure gives the linear response of the concentration of species i at (x, t) if the 
concentration of species j is perturbed by 5 . tS( t -  t ') ~ x  - x ' )  at (x; t'). This concen- v 
tration response function plays a central role in functional sensitivity analysis since all 
other response functions can be calculated from it. 

Expressions for derived sensitivity densities [138,139], higher-order sensitivity 
densities [137], and for the sensitivity of  objective functionals [143] are also given for 
reaction-diffusion systems. 

Frequently, the space and time dependences of parameters are given by functions 
with constant parameters. Incoi~ra t ing  these functions into the system of differential 
equations, the resulting, more involved system, has only constant parameters. For 
example, in the model of a non-isotherm reaction, rate coefficients are functions but 
Arrhenius parameters are constant values. 

If the parameters of a reaction-diffusion system are not space- t ime dependent, 
the non-functional sensitivities can be calculated by the methods described in section 2. 
Such examples are given in refs. [1,41,52,55,93]. 
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3.2. INVESTIGATION OF STOCHASTIC MODELS 

In order to take into consideration the randomness of the molecular events 
responsible for chemical reactions, the concentrations have to be represented by 
stochastic variables. In macroscopic systems, the fluctuations are often negligible and 
the deterministic kinetic equations provide an accurate description of the behaviour of 
the concentrations. In such systems, the fluctuations are important if chemical 
instabilities exist which lead to the amplification of fluctuations. In the description of 
chemical reactions involving a small number of molecules inside a small volume, as in 
the case of reactions in micelles or cells, the stochastic handling of kinetics is essential. 

The use of stochastic differential equations is a convenient way for the descrip- 
tion of concentration fluctuations in chemical kinetics. These equations differ from the 
deterministic ones in a noise term: 

dp/dt  = f (  p, k) + p~T; p(O) = p0, (50) 

where p is the stochastic vector of concentrations, ~ is a delta correlated Gaussian 
stochastic variable vector (white noise), and the matrix P is determined by the reaction 
mechanism and by the volume of the system. All the information on the stochastic 
variable p is summarized in the multiple time probability distribution function 
p,(c 1, t l ; . . .  ; c ,  t ) .  This multi-variable function is difficult to look over and the con- 
centration fluctuations can be characterized by other measures which can be calculated 
from p .  Such measures (denoted jointly by F[ pi]) are, for instance, the expected value 
and the variance of Pi(t). Concentration fluctuations can also be characterized by the 
deviation from the deterministic value f/(t) = Pi(t) - ci(t ) and by the correlation of such 
deviations: C//(tl, t2) = (fi(tl)f)(t2)). 

All of the above functions depend on the parameters and initial concentrations of 
the kinetic system, and a sensitivity analysis of these functions was elaborated by Dacol 
and Rabitz [144]. They gave analytical expressions for the evaluation of the local 
sensitivity and the sensitivity density of the probability distribution function, ~p,/Ok 
and Sp,/fk..  Calculations of~(F[ pi])/~k and ~(F[ pi]) / fk  are possible from the former 
sensitivity Jfunctions. 

In the case of more involved systems, only numerical calculation of ,0/is 
possible. Therefore, a different way was presented for the numerical calculation of 
~(F[ pi])/~kj and 5(F[ pi])/6ki. 

Applying a quasi-linea~ approximation in the reciprocal volume, Dacol and 
Rabitz obtained closed expressions for (Pi(t)) and (pi(tl)pj(t2)) as well as for their 
sensitivity coefficients and densities in terms of the deterministic concentrations c and 
the (deterministic) initial concentration sensitivity matrix K. These expressions allow an 
investigation of fluctuation phenomena without stochastic simulation. However, this 
quasi-linear approximation is applicable only in macroscopic systems and far from 
chemical instability. 
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3.3. REACYION NETWORK SENSITIVITY ANALYSIS 

The network analysis as developed by Clarke reparametrizes the kinetic differen- 
tial equations using new parameters j and h instead of rate coefficients. The components 
of the parameter vector j represent the weights assigned to elementary flows in the 
reaction network, while the parameter vector h can be interpreted as the reciprocal 
steady state of concentrations. Network analysis relates the dynamics of complex 
chemical reaction systems to feedback loops in the reaction network. 

A combination of network theory and sensitivity analysis, presented by Larter 
and Clarke [83], investigates the sensitivity of concentrations on the change of new 
parameters. The new sensitivity matrices 3c/3j  and 3c /3h  carry information on the 
effect of these new parameters, as well as on their relative importance and inter- 
connection. As an example, the Bmsselator was analyzed [83] and the period sensi- 
tivities of the new parameters were studied. 

3.4. EXPERIMENTAL SENSITIVITY ANALYSIS 

In sensitivity analysis, parameters are considered as the input of models. How- 
ever, in a parameter estimation procedure the experimental results are the input and 
the estimated parameters are the output. The experimental elementary sensitivities, 
E = {3k./3c~.} show how the estimated parameters change when the experimentally 

1 t 
measured concentrations c e change. (One could use any experimental observable 
instead of concentrations.) 

Parameters are usually determined by a least-squares procedure, i.e. by minimi- 
zing the function 

n ~  

Q = ~,  ( 1 - ci ice) 2, (51) 
i=1 

where n e is the number of experimental data and c i is the ith calculated concentration 
corresponding to the ith measured concentration c. ~. From eq. (51), a simple procedure 

l 

[145,87] yields the following expression for the calculation of log-normalized experi- 
mental sensitivities: 

m 

M j t ( 3 I n k t / 3 I n c ~ )  = - L j h ,  j =  1 . . . . .  m' ,  (52) 
l= l  

where m'  is the number of estimated parameters, 

nc 

Mjl = E ( ( 32 In ci/3 In kj 3 In k z)(ci/ce)(1 - c i /c  e) 
i=I  

+ ( 1 - 2ci /c~)(ci /c~)(3 In c i /3  In kj )(3 In c i /3  In k t) (53) 
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and 

Ljh = (1 - 2Ch /C~)(Ch /C~)(3 In Ch /3 In kj ). (54) 

Equation (52) represents a system of n c linear inhomogeneous equations and its solution 
requires the prior calculation of the corresponding first- and second-order local concen- 
tration sensitivity coefficients. 

Experimental sensitivities can be used to identify parameters which are highly 
sensitive to noise in the experimental data. These sensitivity coefficients also appear in 
expressions for parameter deviation arising from uncertainties in and discrepancies 
between model and measured observables [145]. 

4. Interpretation of sensitivity information 

4.1. IMPORTANCE AND INTERDEPENDENCE OF PARAMETERS 

Sensitivity coefficients must have the same physical dimensions or they must be 
dimensionless if a comparison of them is required. However, the parameters may have 
different units and then the sensitivity coefficients are directly incomparable. The usual 
treatment of this problem is to introduce normalized sensitivity matrices [37,43,130]. 
The elements of the normalized local concentration sensitivity matrix S are dimension- 
less and therefore their values are independent of the dimensions of the original kinetic 
model: 

= {(kj/ci) (3ci(t2)13kj(q))} = {3 In c.(/2)la In kj(tl) }. (55) 

These coefficients represent the percentage change in concentration c i caused by a 
percentage change of k.. 

1 

The study of a normalized sensitivity matrix allows one to determine the rank 
order of parameters on the basis of the effect on c i at time t 2 as a result of  a small 
parameter change at time q. In the case of another species or different times, a different 
rank order can be obtained. 

Frequently, one is interested in the effect of parameter change on the 
concentrations of several species. The need for such information has been realized by 
Edelson [75], and he applied a heuristic measure. Mathematically more established 
methods can be introduced by using objective functions, which show the deviation of 
a perturbed solution c* from the nominal solution c i considering a group of species. 
Such objective functions are, for instance, 

/ i  

el = ~, [ ( c? -  ci)/cil ,  
i=1 

s 
t l  

e2 = ~ [(c* - ci)[ci] 2, 
i=1 
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o r  
12 l i "  

e3 = S Z [ ( c / -  ci)/cil2dt. 
t l  i =  1 

Using these functions, all the species taken into account in the summation have 
equal weights. The sensitivity of the objective function can be calculated either 
directly [67,68], or from the concentration sensitivity coefficients as, for instance: 

i i  t 

3el /Olnkj = ~ 131nci/Olnkjl, (56) 
i=1 

l i '  

~e2/0 In kj = ~ (2 In ci/~ In  kj) 2, (57) 
i = l  

1 l i '  

3e3/8 In kj = ~ ~ (3 In ci (th)/2 In kj (tl))2, (58) 
h = 2  i=1 

where the effect of the change of parameter j is studied on n' species and in the latter 
equation, integration is replaced by summation. The sum of the squares of the normal- 
ized sensitivities is termed the overall sensitivity [53] and it is closely connected with 
the objective function of the least-squares method. 

When the importance of parameters is treated, it may be worthwhile to 
distinguish two kinds of importance. The kind of parameter importance discussed so far 
may be called tuning importance. Tuning importances give a picture about the 
effectiveness of parameter changes around their nominal values for the inspected 
measure (concentration, objective function). If a parameter has small tuning importance 
with respect to the important species or features, this parameter may not necessarily be 
eliminated. This striking fact has been indicated several times (e.g. [2,53]). The 
reduction importance of a parameter can be determined by setting the parameter to zero 
and rerunning the model. The rank order of reduction importances obtained may be 
quite different from that of tuning importances. Sensitivity methods (except WASP) 
give direct information only for tuning importances. 

Does this mean that there is no way in which to identify redundant reactions on 
the basis of sensitivity analysis? Of course not. A reaction can be eliminated if the 
sensitivity of all species to the corresponding rate coefficients at any time point in the 
considered interval is smal~ [77]. An equivalent statement is that a parameter is 
eliminable if the norm of the corresponding column of the sensitivity matrix is small. 
This norm may be a maximum norm: 

a~ = maxl3 In ci/3 In k]l, (59) 
i 

or a Euclidean norm: 
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~'  = 0 In C i /~ in kj )2 
i= 

(60) 

Note that the overall sensitivities (when all species are considered) are the squares of 
the Euclidean norm and therefore they give the same estimated rank order of reduction 
importances. 

So far, only the concentration sensitivities have been mentioned and the question 
of feature sensitivities has not been discussed. In general, the j th  feature sensitivity 
coefficient refers only to the tuning importance of the j th parameter considering the 
specific feature and it must not serve as a basis for mechanism reduction [2]. If this 
feature is closely connected to all the necessary species (see section 4.2), this value 
might refer also to reduction importance. Such a dominant feature sensitivity might be 
the period sensitivity of an oscillating reaction [121]. 

Having discussed what the importance of  parameters means, one may ask when 
is a parameter important. All the sensitivity matrices discussed in the preceding sections 
(except matrix F and the quasi-stationary sensitivities) belong to a time interval which 
is determined by the time of perturbation t 1 and the time of observation t 2 [1,120]. Both 
the tuning and the reduction importances deduced from such matrices belong to the time 
interval [t 1, tz]. 

Reduction importances belonging to a definite reaction time can be obtained b y  
the study of the algebraic rate sensitivity matrix ~'. This matrix can be processed like 
other sensitivity matrices [ 120]. If only column i of the matrix F is considered, reactions 
having the greatest effect on the rate of production of species i at a given reaction time 
are identified. Similarly to the case of concentration sensitivities, the effect of  para- 
meters on the rate of a group of species can be inspected. If all species are taken into 
account, the reduction importances at a given time are obtained. If a reaction proves to 
be important at least at a single time point in an interval, this reaction must not be 
eliminated from the mechanism. The investigation of the change of reduction 
importances as the reaction proceeds can reveal fine details of  the operation of the 
mechanism. 

Hitherto, the importance of individual parameters in a reaction was discussed. In 
reality, groups of joint parameters influence the concentrations. These parameter groups 
cause functional connections between the sensitivity coefficients and they can be 
identified by the mere inspection and comparison of the elements of the normalized 
local concentration sensitivity matrix [77,66,38,1]. In the next section, a more con- 
venient way is presented for the identification of these parameter groups. 

4.1.1. Principal component analysis 

Let us use the objective function e3 to assess the effect of parameters on a group 
of species. Replacing the integral with summation and introducing the normalized 
parameters aj = in kj ( j  = 1 . . . . .  m), the function e 3 is approximated by: 
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l n "  

e3(a)  = ~ ~ [(C~(th)--Ci(th))/Ci(th)] 2. 
h=2 i=l  

(61) 

This objective function can also be given [53] by 

e3(a ) = (Act)T ~T S(ACt), (62) 

where Act = c t -  cto and the matrix S is defined as 

= 

$2 

$3 

Sh ' 

St 

(63) 

where an element of matrix Sh is 3 In C.(th)/3 In kilt1). 
Let U denote the matrix of  normalized eigenvectors U] of gTg such that 

UTU j = 1, j = 1 . . . . .  m. Then the new set of parameters 

V= uTa, (64) 

called principal components, leads to the canonical form of the objective function e3: 

m 

e3 = ~ ,~i(AI//i) 2, (65) 
j=l 

where A V= UTAa and gl >- )~2 > " "  -> ~ are the eigenvalues of STS. It is apparent from 
eqs. (64) and (65) that the eigenvectors of matrix S ' S  reveal the related parameters and 
the corresponding eigenvalues express the weight of these parameter groups [53]. 

Principal component analysis should be preferred to other methods which 
describe the effect of individual parameters on a group of species concentrations. When 
tuning importances are investigated, the method can identify those cases where, for 
instance, only the ratio or the product of two parameters influences the objective 
function. Moreover, principal component analysis can be very useful in mechanism 
reduction• Sometimes, the elimination of the reactions one by one may cause significant 
changes in the solution, while elimination of reaction pairs has no significant conse- 
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quences [53,122]. Principal component analysis can be used to identify groups of 
reactions which can be eliminated. 

Although the principal component analysis technique was suggested originally 
for the analysis of local concentration sensitivity matrices, it can be adapted to the study 
of other sensitivity matrices, too. The use of principal component analysis for the 
investigation of the rate sensitivity matrix F is discussed in [120]. Applications of 
principal component analysis are found in refs. [53,54,61,91,120-122,164,166,168]. 

4.1.2. Derived sensitivities 

While principal component analysis provides information about both the 
importance and the connection of parameters, calculation of derived sensitivities 
might give a deeper insight into the interconnection of parameters. 

The change of a concentration vector at t 2 as a result of the change of a 
parameter vector at t 1 can be expressed by utilizing the normalized sensitivity matrix S: 

d In c(tz) = g d In k(tl). (66) 

Let us rewrite this equation into the following form: 

( d l n c ~ ( t 2 ) ) = ( ~ l ( d I n k i ! q ) "  ] 

In c ( t2 ) J  ~.S 3 [ S 4 )/.d In k '  (tx)J" 
(67) 

Interchanging variable vectors In c' and In k'  leads to 

(ddlnk'(q)~=(01 I)21(d In ci(t2) ~ 
lnc"(t2)J 03 OgJk, dink'(tl) )" 

(68) 

In eq. (68), In c" and Ink"  are independent variables, while in k" and In c" are dependent 
variables. Using the rules of multivariable calculus, the blocks of matrix D can be 
obtained by 

_-1 
I )  1 = S  1 , 

fi2 =- i l lS: ,  

I)  3 = S 3 D 1 ,  
(69) 
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If matrixS~ is not a square matrix, a least-squares solution is recommended to 
obtain matrix D~ [145]. The blocks of the first-order normalized derived sensitivity 
matrix D have the following elements: 

O lnc~( t2 ) / "  
(70) 

All these derived sensitivity coefficients have an unusual interpretation, as discussed 
below. 

(1) Matrix I)~: Parameter-observation interdependence 

The coefficients of matrix D~ provide information on the accuracy of the deter- 
mination of parameters k '  if concentrations c'  are monitored. In an experiment, it is 
desirable to choose the experimental conditions in such a way as to minimize 
3 in k:/3 In c:. This ensures that the uncertainty in the monitored species concentration 

j t 

c i is not magnified in the estimation of the rate constant kj. 

(2) Matrix I)2: Parameter-parameter interdependence 

If the value of k. is changed at t 1, the derivative 3 In k./3 in k. indicates the 
t 1 

direction and magnitud~ of the necessary change in the rate constant  k i at t~ which 
reproduces the original concentration vector c'  at t 2. 

(3) Matrix [13: Interdependence of different observations 

Let us suppose that in an experiment the concentration profiles for some species 
are monitored, but that this information is inadequate to identify the mechanism and 
therefore the concentrations of fiarther species have to be monitored. The less the 
connection between the old and new observations regarding the parameters k '  to be 
determined, the greater the information increase. The task is to scan the 
observation-observation sensitivities in order to find those observables which are the 
least dependent on the already measured concentrations. 

(4) Matrix [14: Observation-parameter interdependence 

One has to realize that the coefficients of matrix I) 4 are different from the 
elementary sensitivity coefficients 3 In c./3 In k., since in the former case concentra- 
tions c'  are held fixed. Applications of these deri~ed sensitivities have not been reported 
so far. 
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Derived sensitivity coefficients were introduced by Dougherty et al. [43], 
although the matrix I)~ has been calculated in ref. [131], too. Larter et al. showed that 
derived sensitivities can be computed directly, that is, without a priori evaluation of 
elementary sensitivities [139]. Yetter et al. calculated second-order derived sensi- 
tivities [74] as well, and Demiralp and Rabitz presented derived sensitivity densi- 
ties [138]. Recently, Yetter et al. [74] demonstrated the interpretation of derived local 
sensitivity coefficients on the example of a large reaction mechanism. Derived sensi- 
tivities were also applied in the investigation of flames [55]. 

Since partitioning of matrix S in eq. (66) is arbitrary, a number of different 
derived sensitivities are possible which may be calculated from the same matrix S. 
Therefore, it is not practical to search for parameter dependence in this way. However, 
the existence of assumed connections can be proved or refuted by appropriately calcu- 
lated derived sensitivities. 

Another type of derived sensitivities can be calculated from normalized experi- 
mental sensitivities and from the normalized local concentration sensitivities using the 
chain rule [145]: 

m I 

In ci/O In cj e = Y, (O In ci/O In kz)(O In kz/O In c7). (71) 
1=1 

These coefficients interrelate the calculated and the experimentally measured concen- 
trations. 

4.2. IMPORTANCE AND INTERCONNECTION OF VARIABLES 

The aim of most kinetic modeling studies is to properly describe the concentra- 
tion changes of some species considered to be important and/or to reproduce some 
kinetic features of the reaction. A reaction mechanism has to contain both the reactions 
of these important species and the reactions of those species which are necessary to 
accurately calculate the concentration changes of the important species. In a large 
reaction mechanism, some species may be redundant and their concentration need not 
be calculated. Note that the products of important reactions may be redundant species. 

The decision about which species and/or features are considered important depends 
on the objective of the modeling. Here, two methods [122] are given for the identifica- 
tion of redundant species. Both methods are based on the fact that necessary species are 
strongly connected to important species and features. 

4.2.1. Identification of redundant species via reduced models 

According to this method, a species is redundant if the elimination of its 
consuming reactions does not cause significant deviations from the solution of the full 
model with respect to the concentration of important species and/or important features. 
Some redundant species are formed in fast reversible reactions and they cannot be 
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identified by the above test. Therefore, each species has to be reinvestigated by the 
simultaneous elimination of its fast forming and consuming reactions; if the solution of 
the reduced model is practically identical to the solution of the full model considering 
important species and/or features, the investigated species is redundant as well. 

4.2.2. Identification of redundant species via the investigation of the Jacobian 

A species is redundant if its concentration change has no significant effect on the 
production rate of the important species. Such an effect is indicated by an element of 
the normed Jacobian a ln f . / a  in c.. The influence of the change of the concentration of 

• . 1 J 

specms t on the rate of production of an N-member group of important species can be 
taken into account by an overall sensitivity-type measure: 

N 
B i = £ (a l n f n / 0  In c i)2. (72 )  

n = l  

This measure quantifies only the direct effects. Indirect links can be revealed by an 
iteration procedure. The important species, together with the best-ranked species by the 
merit of  their B i values, are taken into account in the summation in eq. (72) to identify 
new necessary species. This procedure is repeated until convergence. Redundant 
species are those which do not take place in the summation at the end. 

The second method is less effective, since redundant species formed in fast 
reversible reactions cannot be identified and the effect on important features cannot be 
investigated. However, this method is suitable for studying how the categories of 
necessary and redundant species change as the reaction proceeds. 

4.3. SEPARATION OF THE SECULAR TERM 

When oscillating reactions are studied by sensitivity analysis, one has to face 
problems which are unknown in the investigation of other reactions. The change of a 
parameter or an initial concentration causes a phase shift in the concentration 
waves [82,125]. Moreover, a parameter perturbation in the general case changes not 
only the wave form, but also the period time of the oscillator• The consequence of a 
change of the period time is that the nominal and the perturbed solutions move away 
from each other as the time proceeds. Therefore, the calculated local concentration 
sensitivities grow without bound in the limit of large times and they consist of  two 
terms: The first one (called structural sensitivity) is a periodic function which carries 
information about the change of the form of the concentration wave. The second, the 
so-called secular term, is proportional to t = t 2 - t a and it becomes arbitrarily large as 
t becomes large. 

An important step in the interpretation of the sensitivity coefficients of  oscillators 
is to reveal the information inherent in structural sensitivities by the separation of the 
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secular term. Two ways were proposed for the separation of the secular term. According 
to the first [80], the phase lead or lag between the original and perturbed solutions is 
calculated by a linear approach from the period sensitivity. Thus, the phase lead or lag 
at time t z is approached by (t/v)(Oz/Okj), where zis the period time and t = t z - t~. The 
corresponding equation for the separation of the secular term is: 

Dci(t2) _ ( Oci(t2)] t Ov dc(t2) 

Okj(tl) Okj-~l )Jr ~ Okj dt 
(73) 

Once the period sensitivities Ov/Ok have been calculated by eq. (34), the structural 
1 

sensitivities (Oc i/Ok,), are derived by a simple addition. 
t " "  arter [126] also presented a more involved, but more general, way for the 

separation of the secular term, based on a Floquet theoretic approach. This method is 
also applicable to unstable oscillators. 

The second way [125] takes into account the actual phase lead or lag (Ot/Ok~),~ 
at time t instead of the linear approach. The corresponding equation is: 

1 I tldci t2  
Okj(tl ) ~j(tl-) ~ -  -~j ~ ~ ' 

(74) 

where (O~/~k:).,. and (Ot/Ok,)~ are called path-independent sensitivity and phase 
s e " " " J " "  nsmvtty, respectively. The calculation of phase sensitivities is more complicated than 
the calculation of 0 z/Ok., but path-independent sensitivities can be considered the exact 

/ 

structural sensitivity coefficients. Kramer et al. [125] also elaborated equations for the 
calculation of second-order period, structural, path-independent, and phase sensitivities. 

Recently, the concept of the secular term was also applied to non-oscillatory 
systems [76]. The secular term of a general sensitivity coefficient corresponds to the 
change in the time scale of the reaction caused by the change of a parameter. The secular 
term free sensitivity coefficients were applied to the prediction of the model solution for 
parameter values away from the nominal parameter values. 

Short summaries dealing with the handling of the problem of the secular 
term based on eq. (73) are found in refs. [146] and [147]. The ~paration of the 
secular term has been illustrated so far only in the case of small model systems, 
such as Brusselator [82,126], the Lotka-Volterra model [80], and other simple 
systems [76,125]. 

5. Software 

Computer programs make sensitivity tools applicable for the chemist. All 
methods discussed so far are reproducible from their announcing articles, but coding a 
sophisticated method might be an exhausting task. There are a number of articles in 
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which the authors report on their efforts for coding a method, and they give tips on how 
to construct an efficient program. Such articles are refs. [102] and [103] for the FAST 
method, ref. [69] for the Green function method (version (1)), and ref. [65] for the 
SGFM/II method. 

Unfortunately, only few articles exist in which a ready computer code is 
published. FORTRAN codes are presented in [89] for the polynomial approximation 
method and in [51] for the decomposed direct method. 

Several programs are offered in the literature for sensitivity calculations. A 
computational implementation of the GFM/AIM method is available from the authors 
of ref. [148]. Moreover, this software was also combined with the CHEMKIN chemical 
kinetics software [149], yielding a production code called CHEMSEN [150] to model 
isothermal constant-volume chemical kinetics systems. This program was reproduced 
by Hayashi and Fujiwara [ 15]. Caracotsios and Steward offer a program package named 
DASAC [50] which is based on an improved direct method. The combination of this 
program with the CHEMKIN package is called SENKIN [151] and is applicable for the 
sensitivity study of a homogeneous reacting gas mixture in a closed system. Another 
realization of the decoupled direct method is offered under the name ODESSA [48]. 

The author of this review also offers a program package, named KINAL [152], 
which is written for the kinetic analysis of complex reaction mechanisms. The package 
includes programs for the integration of kinetic differential equations, for the 
construction of the rate sensitivity and quasi-stationary sensitivity matrices, and 
for the calculation of the local concentration sensitivity matrix based on the decomposed 
direct method. The principal component analysis is applied to reveal information 
inherent in these matrices. 

6. Applications 

Applications of sensitivity analysis cover very important areas of kinetic 
modeling. Usually, several sensitivity tools can be used to solve the same problem and 
the selection of the appropriate method is based on a trade-off between accuracy and 
computer time demand. Most problems may also be solved by methods other than 
sensitivity analysis, but they will not be discussed here. 

6.1. UNCERTAINTY ANALYSIS AND PARAMETRIC SCALING 

All parameters of mathematical models have more or less uncertainty. 
Uncertainty analysis methods are addressed to calculate the uncertainty of model 
results caused by the uncertainties of the parameters. The uncertainty of a model output 
may be so significant that the practical value of the model may be questioned. 

In sensitivity analysis, each parameter is perturbed to the same extent, while in 
uncertainty analysis (also called sensitivity/uncertainty analysis), the real uncertainty 
associated with each parameter is taken into account. Such uncertainty information is 
derived from the statistical analysis of experimental data. Laboratory controllable 
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parameters (e.g. the temperature of a thermostat) also have an uncertainty, caused by the 
experimental apparatus. 

Global methods are directly applicable to uncertainty analysis. Such calculations 
have been performed by the Monte Carlo method [115-117], by the Latin hypercube 
method [36,118], and by the FAST method [107,108]. 

Local sensitivity information can also be a basis for uncertainty analysis. The 
mean value and variance of the concentration c i can be determined [46] by the equa- 
tions: 

m rn m 
1 (Ci) = Ci + ~ Z (~2¢i/Ok2)(72(kj)+ Z Z (~2ci/~kj ~kl)COv(kj ,kl); (75) 

j=l j=l /=j+l 

m m m 

cr2(ci) = Z (Oci/~kj)2cr2(kj) + 2 ~, ]~ 
j = l  j = l  / = j + l  

(bci /3gj )Oci /3gt ) cov(gj, gt) 

m 

+ ~ (~ci/Okj )(~2ci/~k2)#3 (kj), (76) 
j = l  

where #3 is th . .bird central moment. Frequently, only the mean value and the variance 
of parameters are known, and in such cases the last term in eq. (75) and the two second 
terms of eq. (76) can be neglected. However, knowledge of the covariance matrix is 
essential if the parameters are highly correlated. 

The use of linear sensitivity information in uncertainty analysis requires orders 
of magnitude less computational effort, but the results obtained may be misleading if 
the uncertainty of the parameters is large. Non-global uncertainty analyses were also 
carried out by Dodge and Hecht [25] and by Butler [153]. Their considerations were 
based on sensitivities calculated by the brute force method. 

While uncertainty analysis investigates the influence of parameters on the solu- 
tions from a stochastic point of view, this problem has a deterministic equivalent: What 
will be the new solution of the model at time t z if the parameters are changed at 
time tl? The process of extrapolation of a modeling result to new parametric conditions 
is called parametric scaling. 

The simplest solution of the problem of parametric scaling is based on the 
application of the Taylor series, in which the coefficients are the local first- and higher- 
order sensitivity matrices (cf. eqs. (2) and (3)). As an example, Taylor series approxi- 
mations were used [125] to predict the new amplitude and period time of a limit cycle 
oscillator when the parameters are changed significantly. 

In chemical kinetics, the exponential behaviour of species concentrations is 
ubiquitous and therefore eq. (77) gives a better approximation in most cases than the 
first-order Taylor series [43]: 

ci(k + Ak) _=_ cl exp (Akj/ci)(Oci/3kj) . (77) 
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Hwang [40] applied a similar equation supplemented by second-order terms, and found 
it much better than eq. (77). 

Kramer et al. [76] examined several strategies for parametric scaling. They 
showed that the previous methods may provide physically unrealistic results when c has 
known bounds. First- and higher-order alternative equations are proposed with built-in 
constraints, thus expanding the parametric region in which the extrapolation may be 
valid. They also demonstrated that secular term free sensitivities can be better applied 
for parametric scaling, both in the case of oscillatory and in the case of non-oscillatory 
systems. 

6.2. PARAMETER ESTIMATION 

A usual task in chemical kinetics is the fitting of model parameters to experi- 
mental data. Suppose that the structure of the regression model allows an adequate fit. 
Then the greatest possible pitfall in a parameter estimation procedure is to 
encounter an ill-conditioned problem. Here, we present a procedure [53], based on the 

eigenvector-eigenvalue decomposition of matrix P, to avoid such problems. The 
definition of this matrix is 

L ~T 
15 = ~ R (tl)Wlll(tl),  (78) 

l = l  

where matrix R: = (O In hid in e)(3 In e/O Ink),  the function h(c) is the instrumental 
function, i.e. the function which converts the calculated concentrations into calculated 
signals of the experimental apparatus, and L is the number of measurements. The matrix 
W l is the weighting matrix belonging to the lth data set, which may be identical to the 
unit matrix (unweighted parameter estimation) or is chosen as the inverse of the 
covariance matrix. 

Parameters which are not related to large eigenvector elements of large eigen- 
values cannot be determined by parameter estimation. The values of these parameters 
have to be fixed to avoid singularity. In addition, very often only the value of the 
quotient (or product) of some parameters can be determined. This situation is 
indicated by a low-eigenvalued normed eigenvector which has a form similar to 
(0.707, +0.707, 0 . . . . .  0). In this case, one of the coupled parameters has to be fixed. 
However, one has to keep in mind that the ratio of the parameters and not their real 
values are determined! This procedure is also a solution for the problem of the deep- 
valley-shaped objective functions, which occur often in chemical kinetic modeling [2]. 

The matrix P depends on the values of parameters. Since the exact values of 
parameters are not known, one has to calculate the matrix using estimated parameters. 
It is advisable to carry out the eigenvalue-eigenvector decomposition of the recalcu- 
lated matrix P in each cycle of parameter estimation. The list of fixed parameters may 
have to be revised as the parameter set becomes more and more accurate. 
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Note that the principal component analysis of matrix ~T~ is obtained when the 
concentrations are measured directly (h = c) and weights are not used (W = I). 

Having determined which parameters have to be fixed, one can start the para- 
meter estimation procedure. The Marquardt algorithm has proved to be the most 
effective tool for parameter estimation in chemical kinetics [154]. According to this 
method, the parameters are fitted by an iteration and the new parameter set is deter- 
mined using the following equation: 

/3(i+ 1) = 1 + (15TP + ~.i) -115T ~ l~T(tt) Wl [Yt -- h(c( t t ) ) l ,  (79) 
l= l  

where an element of vector/3 (i+ 1) is the ratio of the new and of the old estimated value 
of parameter j, i.e. ~(" + 1) = k(~ + l)/k(~) ' y, is the vector of measured data in the lth 
experiment, and 7~ is the Marq~ardt p'aram'eter. All vectors and matrices on the right- 
hand side of eq. (79) are evaluated using the parameter vector k (;). 

Efficient numerical methods, developed for the calculation of local concentration 
sensitivities, are well applicable in a parameter estimation. The sensitivity matrices have 
to be computed using the first-guess values of parameters. Then matrices R. and P are 
calculated, the parameters to be fixed are selected, a new parameter set is obtained by 
eq. (79), and the procedure is repeated until convergence is achieved. 

Above, it was assumed that the structure of the regression model is adequate for 
fitting the data. If not, a discrepancy between the measured and calculated data will 
remain even in the case of the best fit. In this case, new parameters (new reactions) have 
to be searched for to complement the original model. The values of the assumed new 
parameters are set to zero and a sensitivity analysis is carried out. The solution of the 
model remains unchanged, but great sensitivity indicates that these parameters might 
effectively change the solution. Such calculations were described in refs. [71] and [79]. 
Note, however, that the effect of a new parameter may be very different if its value is 
different from zero. 

6.3. DESIGN OF EXPERIMENTS 

Each laboratory experiment should be preceded by experimental design to ensure 
the maximal effectiveness of laboratory work. The problem of experimental design can 
be interpreted both from strategical and tactical approaches. 

If one has a large multi-parameter model to improve, one has to identify those 
parameters which should be known more precisely. These parameters are not neces- 
sarily the most uncertain parameters, but they are those parameters which cause the 
greatest uncertainty in the modeling results. Therefore, the parameters to be investigated 
experimentally have to be selected on the basis of the result of an uncertainty analysis. 

The next step is the design of an experiment in which more accurate values for 
the critical parameters are determined. There are several ways of performing experi- 
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ments: often one can select the species' concentrations to be measured, the time points 
of the measurement, and the initial concentrations of reactants. On the basis of a 
simulated experiment, matrix P has to be calculated according to eq. (78). The principal 
component analysis of matrix P reveals if the value of the parameter in question can be 
determined. The matrix P has to be recalculated for different planned reaction circum- 
stances until the parameter to be determined is a single dominant element of a principal 
component of large eigenvalue. 

The above described "tactical experimental design" can also be carried out by 
using either derived sensitivities or experimental sensitivities. The appropriate elements 
of the derived sensitivity matrix I) 1 have to be minimized to decrease the variance of 
parameters to be determined. The matrix D2 gives information about the influence of 
the value of fixed parameters on the value of fitted parameters. The selection of new 
concentrations to be measured besides the already measured ones can be based either 
on matrix D3 or on the derived experimental sensitivity matrix. Elementary experimen- 
tal sensitivities can be used to identify those parameters of the assumed model which 
are strongly affected by noisy data. 

6.4. REPRO-MODELING 

When modeling a spatially inhomogeneous chemical reaction system, the kinetic 
equations have to be solved at each grid point. This means several hundreds or 
thousands of solutions of large sets of ODEs while their initial conditions cover a 
physically reasonable (usually not very large) domain. After the solution of the kinetic 
equations, the transport equation has to be solved over the same time interval. This time 
interval At is determined by the stability and/or the accuracy of the transport equation 
and it is usually not very long, while stiff ODE solvers require time to "start up" and 
are therefore not very efficient over a short time interval. The consequence is that an 
overwhelming part of the computer time used in modeling a space-time system is con- 
sumed by the description of chemical reactions. 

The application of initial concentration sensitivities offers a simple and efficient 
solution for this problem [60]. This procedure is called "repro-modeling". The domain 
of initial concentrations is covered by a grid of C O vectors. The solution of kinetic 
equations F(C °, At) and the first- and second-order initial concentration sensitivities 

I 02F(At) 0F(At)  and ~ ¢=c 
OC Ic=C ° o 

are calculated for each C O initial concentration set and are stored Cparametrization of 
the mechanism"). Then the solution of the kinetic equations after a time interval At for 
any arbitrary c o initial concentrations within the domain of interest can be approxi- 
mated by 
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0F(At) (c o _ciO) c(c O, At) = F(cO, At)+ ~I ~ c=c ° 

, O=F At!  cO_cO)(cO_cO), (80) 
) o 

where C o is chosen to be close to c o . 
Dunker [60] applied this procedure to a photochemical mechanism for oxidant 

formation in urban areas. He showed that the computational effort required for the 
solution of  the kinetic equations by this method was reduced by more than two orders 
of magnitude, while the approximated concentrations agreed fairly well with the exactly 
calculated ones even after fifteen hours simulation time. 

Marsden et al. [155] also presented a similar approximation, where the whole 
initial concentration domain is covered by one second-order empirical polynomial. This 
procedure is closely related to the determination of sensitivities using approximate 
empirical models. In the method of Dunker, the coefficients of  the second-order poly- 
nomial depend on initial concentrations, but this is not the case in the method of 
Marsden et al., and therefore the second way is simpler but provides less accurate 
solutions. 

6.5. STABILITY ANALYSIS 

If the solution of a mathematical model is perturbed at t 1 by ~C(tl), the deviation 
between the perturbed and the nominal solutions at t 2 can be expressed by 

Sc(t2) = K(t 2, t l) ac(tl), (81) 

where K is the initial concentration sensitivity matrix (see eq. (10)). The growth or 
shrinkage of  6c shows the stability of the model with respect to changes in the initial 
concentrations. A useful method to assess the stability is to perform an eigenanalysis of  
matrix K [82,84]. The eigenvalues of K indicate the stability, instability, or marginal 
stability of certain combinations of deviations from the initial condition in the Lyapunov 
sense. The eigenvectors indicate the direction of deviation from the solution in state 
space. 

The mixed second-order sensitivity coefficients can be interpreted as the sensi- 
tivity of matrix K: 

02C(t2) c3K(t2,q) 
= . ( 8 2 )  

Okt(tl )0c °(tl ) akt(tl ) 
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The analysis of matrix OKlOk t provides the sensitivity of stability eigenvectors and 
eigenvalues to model parameters. This gives information on how the stability changes, 
both in magnitude and in direction, as a function of system parameters. 

The concentration sensitivity matrix S can also be interpreted as a measure of the 
stability of the solution with respect to the change of the parameters. (The second-order 
sensitivities can be considered to be the sensitivity of these stability measures.) If small 
perturbations in the model parameters cause exorbitant changes in the model 
predictions, the usefulness of the model may be questioned [143]. Larter demonstrated 
[80] the structural instability of an oscillating reaction model by the calculation of 
secular term free sensitivities. 

6.6. INVESTIGATION OF REACTION MECHANISMS 

The study of the effect of parameter perturbance on the solution, which is the 
essence of dynamic sensitivity analysis, can provide significant information on the 
structure of reaction mechanisms. The change of a parameter belonging to reaction j 
causes a direct concentration change only in the case of those species which are 
reactants or products in this reaction. The direct concentration changes cause further 
changes in the concentration of other species [120]. The latter indirect (nonlinear) 
effects cannot be predicted by screening analysis or by studying matrix F, and the 
nonlinear effects revealed by dynamic sensitivity analysis can be used to settle 
particular mechanistic questions [1,26,43,44,72,97,106,132]. The sensitivity informa- 
tion belongs to a time interval and this interval can be changed by changing the time 
of perturbation t 1 and the time of observation t 2. This was called "the variable-initial- 
time procedure" by Hwang [1]. 

Often, one is interested in the structure of reaction systems and the importance 
of reactions at a defnite reaction time which corresponds to a given concentration set. 
Such questions can be answered by the analysis of matrix F [120]. This technique can 
have advantages also in the study of distributed parameter systems, since in some cases 
the time-consuming functional sensitivity analysis may be avoided [164]. 

Rate-limiting steps are exposed by very large sensitivity coefficients [ 104,131,156]. 
Recently, Ray [! 19] proposed the following definition of rate-limiting steps: a reaction 
step is rate-limiting if the increase of the rate coefficient causes a significant increase 
of the overall reaction rate. Therefore, the rate-limiting step can be identified by 
inspecting the ith row of the dynamic rate sensitivity matrix, where the rate of produc- 
tion of the ith species is considered to be identical to the overall rate of the reaction. A 
possible extension of the original definition is to assign a rate-limiting step to the 
formation or consumption of each species of a complex reaction. The rate-limiting 
step of the ith species can be identified (if it exists) by searching for a very large element 
in the ith row of the dynamic rate sensitivity matrix. This extension of the definition 
may be useful, since in the case of some complex reaction systems (e.g. smog mechan- 
isms), the concept of an overall reaction rate is meaningless and therefore the original 
definition of a rate-limiting step cannot be applied. 



240 T. Turtnyi, Sensitivity analysis of complex kinetic systems 

The existence of fast equilibrium conditions or quasi-stationary species causes 
interactions between the parameters. They can be identified by one of the methods 
described in section 4.1. As an example, such parameter connections can be revealed 
by principal component analysis of the local concentration sensitivity [53,54] or the rate 
sensitivity matrices [120,168]. 

A list of sensitivity studies on complex reaction mechanisms is given in table 1. 
This table can be used as a source of citations to find which difficulties have been 
encountered using the sensitivity method of interest. Furthermore, in examining a 
reaction system, experience obtained by the investigation of similar reactions can be 
utilized. 

6.7. REDUCTION OF REACTION MECHAN/SMS 

The WASP method [111] is the only sensitivity method which gives direct 
information about the effect of the elimination of parameters from a mechanism. 
Unfortunately, the application of WASP for mechanism reduction requires an unreason- 
able amount of computer time. 

There are a number of methods for the estimation of the reduction importances. 
Grigoryeva et al. proposed a mechanism reduction procedure based on repetitive calcu- 
lations of FAST sensitivity coefficients [101]. The method of Pierce et al. [104] is also 
based on FAST sensitivity coefficients. Frenklach proposed a synoptic study of appro- 
priate feature sensitivities and of reaction rates [2]. 

Mechanism reduction can be based on the direct investigation of local 
concentration sensitivity coefficients [1,77], or on vector norm analysis or principal 
component analysis of the local concentration sensitivity [53,54,164], rate sensitivity 
[ 120,164,166,168], or quasi-stationary sensitivity [91] matrices. Species taken into 
account in the analyses can be selected by one of the methods described in section 4.2. 
Combinations of the above procedures give an enormous number of variations. The 
method [122] described below seems to be effective regarding both the computer time 
requirements and the size of the obtained reduced mechanism. 

First, the modeler has to decide which species concentrations or features of the 
full mechanism are required to be reproduced by the reduced mechanism. The first 
method described in section 4.2 provides the list of species necessary in the reduced 
mechanism. Then, a principal component analysis of matrix F is fulfilled with important 
and necessary species in the objective function of the method. This analysis has to be 
carded out for several reaction times allocated in the entire time interval of interest. A 
reaction must not be eliminated if it proves to be important at any time. The next step 
is to eliminate the redundant reactions from the mechanism. Finally, the success of 
mechanism reduction is tested by comparing the solutions of full and reduced 
mechanisms. 

The reduced mechanism obtained can be shrunk further by reaction lumping, 
taking into account the rate-limiting steps, fast equilibrium conditions, quasi-stationary 
species, and parallel reactions. Another possibility for the reduction of the size of 
reaction mechanisms is species lumping. Recently, new methods were published for the 
analysis of lumping [157,158,170,174,175]. 
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Table 1 

Column numbers refer to: (1) short name of complex reaction mechanism studied; (2) number of 
species; (3) number of reactions; (4) references; (5) sensitivity method applied (see abbreviations); 
(6) aim or short description of the investigation 

(1) (2) (3) (4) (5) (6) 

Pyrolysis 
High temperature propane pyrol. 

Low temperature propane pyrol. 

Hexane pyrolysis 
Ethane pyrolysis 

Decomposition of nitromethane 
Decomposition of methane 
Pyrolysis of butylbenzene 

Combustion 

Oxidation of CH 4 
H2-O 2 combustion 

H2/O2~ 2 flame 
High temperature air reactions 
CH4-O2/Ar system 

CS2-O 2 explosion 
Methane-air flame 
Formaldehyde oxidation 

Oxidation of cyanogen 
Oxidation of methane 
Cs flare reaction 

14 44 [31] BF feature sensitivity 
[159] BF feature sensitivity 

11 22 [33] AEM test of the method 
14 66 [91] QSA, PCA mechanism reduction 

[120] RA, PCA mechan, invest. & reduct. 
38 98 [75] GFM mechanism investigation 

[70] GFM numerical test 
[122] RA, PCA mechanism reduction 

11 38 [27] BF numerical example 
7 5 [45] AIM, (GFM, DM) numerical test 

[22] DM, (AIM, BF) numerical test 
[76] AIM parametric scaling 
[47] DM numerical test 

15 25 [56] DM numerical example 
9 9 [101] FAST mechanism reduction 

26 128 [88] AIM mechanism investigation 
17 36 [160] BF mechanism investigation 
29 60 [63] DM mechanism investigation 

14 12 [37] DM mechanism investigation 
6 18 [97] FAST test of the method 
8 32 [30] BF feature sensitivity 
9 62 [44] GFM mechanism investigation 
8 34 [41] DM mechanism investigation 
5 10 [97] FAST test of the method 

13 46 [106] FAST mechanism investigation 
[43] GFM numerical test 
[15] AIM numerical test 

10 11 [130] BF feature sensitivity 
13 36 [161] BF feature sensitivity 
15 25 [43] GFM, (DM) numerical test 

[22] DM, (BF, AIM) numerical test 
[51] DM numerical test 
[53] DM, PCA mech. invest. & reduct. 
[120] RA, PCA mech. invest. & reduct. 

11 15 [28] BF feature sensitivity 
20 56 [105] FAST example of the method 

6 10 [38] PAM, (DM) numerical test 
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Table 1 (continued) 

(1) (2) (3) (4) (5) (6) 

Combustion 
Wet oxidation of CO 

Oxidation of N 2 
Oxidation of n-butane 
Oxidation of acetaldehyde 
C½ inhibited CO/H. z flame 
Steady state CH4/O 2 flame 
Premixed Hz-air flame I 
Premixed H2-air flame II 
B/O/H/C combustion 

Thermolysis of methanol 
Oxidation of methane 

12 52 [12] AIM, (GFM,DM,BF) 
[72] AIM 
[47] DM 
[15] AIM 

8 10 [741 AIM 
12 54 [162] 
5 10 [101] FAST 

[151 AIM 
302 [15] AIM 

19 128 [132] BF 
25 174 [26] BF 

8 38 [93] NM 
8 38 [61] DM, PCA 

19 118 [85] AIM 
[86] AIM 

13 16 [163] BF 
19 61 [171] DM 

[1721 DM 
21 69 [173] BF 

Atmospheric chemistry and photochemical smog 

Smog mechanism (Dodge et al.) 20 31 [25] 
Chapman mechanism 3 4 [42] 

[43] 
[64] 
[77] 
[38] 
[51] 

Stratospheric model 55 [115] 
[1161 

Smog mechanism (McRae et al.) 31 56 [107] 
[221 

Photolysis of C O - N O - H 2 0  
mixture in air 13 10 [112] 

Smog mechanism 
(Stockwell and Calvert) 62 130 [68] 

Sulfate production in clouds 30 34 [78] 
Smog mechanism (CBM-IV) [110] 
Reactions of unpolluted air 22 60 [91] 

[1641 
Reactions in clouds 69 182 [24] 
Sulfate production in clouds [165] 

BF 
DM, FS 
GFM 
SGFM/II 
SGFM/II 
PAM, (DM) 
DM 
MC 
MC 
FAST 
DM, (AIM, BF) 

SSA 

SOF 
AIM 
BF, FAST 
QSA, PCA 
DM, RA, PCA 
BF, DM 

numerical test 
feature sensitivity 
numerical test 
numerical test 
derived sensitivities 
uncertainty analysis 
mechanism reduction 
mechanism investigation 
mechanism investigation 
feature sensitivity 
feature sensitivity 
mech. invest. & reduct. 
mech. invest. & reduct. 
mechanism investigation 
mechanism investigation 
mechanism investigation 
mechanism investigation 
mechanism investigation 
feature sensitivity 

uncertainty analysis 
numerical example 
numerical test 
numerical test 
mechanism reduction 
numerical test 
numerical test 
uncertainty analysis 
uncertainty analysis 
mech. invest., uncert, anal. 
numerical test 

test of the method 

mechanism investigation 
mechanism investigation 
mechanism investigation 
mechanism reduction 
mechanism reduction 
mech. invest. & reduct. 
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Table 1 (continued) 

(1) (2) (3) (4) (5) (6) 

Oscillating reactions 

Brusselator 

Oregonator 3 

Lotka model 2 

BR reaction 12 
8 

BZ reaction (EFN model) 13 

4 [91 FAST 
[821 FS, GFM 
[143] FS 
[83] GFM 
[841 GFM 
[126] F 

5 [811 GFM 
[51] DM 
[89] PAM 

4 [128] GFA 
[80] GFM 

36 [79] GFM 
15 [166] RA 
32 [71] GFM 

[54] DM, PCA 
[121] RA, PCA 

BZ reaction 11 17 [57] DM 
(both high and low sets) [58] DM 

BZ reaction 25 80 [168] RA, PCA 

Other systems 

H2-F z chemical laser 15 136 [10] FAST 
Michaelis-Menten model 4 3 [104] FAST 
ASN enzyme model 8 16 [ 104] FAST 
Frieden enzyme model 6 12 [104] FAST 
NzO decomposition 7 9 [66] SGFM/I/ 
H2-Br 2 reaction 5 5 [53] DM, PCA 
CH3/O~_ system 5 8 [73] AIM 
H2CO + OH reaction 15 17 [87] AIM 
lignin yellowing 58 91 [167] BF 

numerical example 
sensitivity of limit cycles 
without numerical solution 
network sensitivity analysis 
stability analysis 
feature sensitivity 
feature sensitivity 
numerical test 
numerical test 
feature sensitivity 
separation of the secular term 
feature sensitivity 
mechanism reduction 
feature sensitivity 
mech. invest. &reduct. 
mech. invest. & reduct. 
feature sensitivity 
A/interpretation 
mech. invest. & reduct. 

mechanism investigation 
mechanism investigation 
mech. invest. & reduct. 
mechanism investigation 
numerical test 
numerical example 
error analysis 
error analysis 
mech. invest. & reduct. 

List of abbreviations: AEM: approximate empirical model method; AI: artificial intelligence; AIM: 
analytically integrated Magnus modification of the GFM; ASN: Ainslie, Shill and 
Neet; BF: brute force method; BR: Briggs-Rauscher; BZ: Belousov-Zhabofinsky; 
DM: direct method; EFN: Edelson-Field-Noyes; F: Floquet theorem; FAST: Fourier 
amplitude sensitivity test; FS: functional sensitivity investigation (including sensi- 
tivity density); GFA: global feature sensitivity analysis; GFM: Green function 
method; MC: Monte Carlo method; NM: Newton method for the solution of 
sensitivity equations for a two-point boundary value problem; PCA: principal 
component analysis; QSA: quasi-stationary sensitivity analysis; RA: rate analysis 
(analysis of matrix F); SGFM: scaled Green function method; SOF: direct calculation 
of the sensitivity of objective functions; SS: stationary sensitivities; SSA: stochastic 
sensitivity analysis. 
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7. Concluding remarks 

At present the theory of sensitivity analysis has achieved an advanced level, and 
efficient numerical realizations are also available. However, sensitivity analysis has not 
been applied as extensively as would be desirable and possible. Although in the last few 
years several papers were published in which sensitivity methods were applied, in most 
of the papers that have so far appeared in this field, the sensitivity methods and not the 
reaction systems were the subjects of investigation. In this review, not only are 
the theoretical and numerical tools of sensitivity analysis enumerated, but also their 
practical applications are dealt with in detail. Hence, it is hoped that this paper may help 
to bridge the gap between theory and application of sensitivity analysis in chemical 
kinetics. 
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